Anomalously large critical regions in power-law random matrix ensembles.

نویسندگان

  • E Cuevas
  • V Gasparian
  • M Ortuño
چکیده

We investigate numerically the power-law random matrix ensembles. Wave functions are fractal up to a characteristic length whose logarithm diverges asymmetrically with different exponents, 1 in the localized phase and 0.5 in the extended phase. The characteristic length is so anomalously large that for macroscopic samples there exists a finite critical region, in which this length is larger than the system size. The Green's functions decrease with distance as a power law with an exponent related to the correlation dimension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power-law eigenvalue density, scaling, and critical random-matrix ensembles.

We consider a class of rotationally invariant unitary random matrix ensembles where the eigenvalue density falls off as an inverse power law. Under a scaling appropriate for such power-law densities (different from the scaling required in Gaussian random matrix ensembles), we calculate exactly the two-level kernel that determines all eigenvalue correlations. We show that such ensembles belong t...

متن کامل

Rotationally invariant family of Lévy-like random matrix ensembles

We introduce a family of rotationally invariant random matrix ensembles characterized by a parameter λ. While λ = 1 corresponds to well-known critical ensembles, we show that λ = 1 describes ‘Lévy-like’ ensembles, characterized by power-law eigenvalue densities. For λ > 1 the density is bounded, as in Gaussian ensembles, but λ < 1 describes ensembles characterized by densities with long tails. ...

متن کامل

Commutative law for products of infinitely large isotropic random matrices.

Ensembles of isotropic random matrices are defined by the invariance of the probability measure under the left (and right) multiplication by an arbitrary unitary matrix. We show that the multiplication of large isotropic random matrices is spectrally commutative and self-averaging in the limit of infinite matrix size N→∞. The notion of spectral commutativity means that the eigenvalue density of...

متن کامل

Power-law deformation of Wishart-Laguerre ensembles of random matrices

We introduce a one-parameter deformation of the Wishart-Laguerre or chiral ensembles of positive definite random matrices with Dyson index β = 1, 2 and 4. Our generalised model has a fat-tailed distribution while preserving the invariance under orthogonal, unitary or symplectic transformations. The spectral properties are derived analytically for finite matrix size N ×M for all three β, in term...

متن کامل

Universality of a family of random matrix ensembles with logarithmic soft-confinement potentials

Recently we introduced a family of U N invariant random matrix ensembles which is characterized by a parameter describing logarithmic soft-confinement potentials V H ln H 1+ 0 . We showed that we can study eigenvalue correlations of these “ ensembles” based on the numerical construction of the corresponding orthogonal polynomials with respect to the weight function exp − ln x 1+ . In this work,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 87 5  شماره 

صفحات  -

تاریخ انتشار 2001